If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-13x-9=0
a = 4; b = -13; c = -9;
Δ = b2-4ac
Δ = -132-4·4·(-9)
Δ = 313
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{313}}{2*4}=\frac{13-\sqrt{313}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{313}}{2*4}=\frac{13+\sqrt{313}}{8} $
| -1^2+(-1x)+1=0 | | -41+3y=-23-18 | | y=-2.25+4.5=2.25 | | 10×+2=5x+7 | | 96-4w=-28 | | {(3x+8)/5}+x=(x+1)/2 | | 5n+(-55)=20 | | 2x=70+30 | | 6y-2y=70 | | 1/4+1/2=n | | 125+x=56 | | 4y^+26y-84=0 | | 61/7+12/7+4/7=n | | -5/2(c-12)=50 | | 11x+12=160 | | 1/2-1/8=n | | n+5/7=35/7 | | 3/10+n=7/10 | | 77=7m+28 | | 5(w+5)=75 | | -6(b+25)=18 | | -6(b+35)=18 | | 6k+20=74 | | 6k+30=74 | | 7m+25=88 | | 6(j-83)=36 | | 3(q-91)=3 | | 5-7u=30 | | 7(q+7)=98 | | 7(j-96)=7 | | 6q-8=46 | | 400=x2+30x |